会员登录|免费注册|忘记密码|管理入口 返回主站||保存桌面|手机浏览|联系方式|购物车
企业会员第1年

济南亿丰机械制造有限公司  
加关注0

多功能母线加工机、母线折弯机

搜索
新闻分类
  • 暂无分类
联系方式
  • 联系人:孙先生
  • 电话:0531-87352188
  • 邮件:sdxinye@163.com
  • 传真:0531-87352199
站内搜索
 
荣誉资质
  • 暂未上传
友情链接
  • 暂无链接
首页 > 公司新闻 > 绕线机的数控系统和伺服驱动系统的要求
公司新闻
绕线机的数控系统和伺服驱动系统的要求
2010-10-27IP属地 火星132
在数控绕线机的高速化中,提高主轴转速占有重要地位。主轴高速化的手段是直接把电机与主轴通过联接器,联接成一体,联接器的变速功能可将主轴转速大大提高。排线部份则采用直线电机技术来替代目前绕线机排线传动中常用的滚珠丝杠技术,在提高排线精度的同时,提高了加速度。除在绕线机上不断采用新型功能部件外,高速绕线必要的工装模具的跳动及同心度在系统控制的高速运动下,需要专业合理的设计需要高精度的加工,方能满足高质量的线圈绕制需求。数控系统方面的问题也不再能归结为简单的排线几何动作问题或静力学问题。新型排线架控制作为一个动态对象,它并不是"亦步亦趋"地跟随主轴的转动对所施加线圈进行排线控制,而力图表现出它的"柔性前瞻和智能性";另一方面,所施加的控制必须充分顾及被控制对象的动态特性,才能得到预期的控制效果。因此,已经不能像传统的数控系统那样,可以将控制系统与被控制对象分开来研究和制造,而必须作为一个整体来处理,研究其在高速状态下的动力学问题,以及超高速运动控制条件下光、电信号的时滞影响及其消除的问题。在高速情况下,必须研究集数控系统与控制对象为一体的整体联动、基于整体动力点的非线性控制策略、智能化控制方法等。机电特性参数的辨识、分析与控制优化高速控制的核心在于实现高加速度,为此需要使伺服机构处于最佳工作状态,从而获得系统最大运动加速度。因此,基于系统整体的加速度控制曲线选择、伺服机电参数的辨识优化、多轴增益的协调控制等是当前绕线机亲型数控化研究的热点。高速、高精插补运算和控制算法高速、高精插补是将复杂的全自动绕线机运动轨迹按控制规律分解成伺服控制指令。绕制高度复杂化的线圈时,绕线程序由大量细微调整程序构成,机械制造有限公司绕线机的高速运行除需保证微段程序连续执行外,还需根据主轴的变化及时预测线圈当前状态,实现高加速度运行要求。这就要求对微段程序的高速、高精插补、高速预处理,微段程序的加减速控制,超前的位置预测,复杂轨迹的直接插补以及高速数据传输等进行深入的研究;面向高速高精线圈绕制的数控编程原理及方法,传统的数控编程解决了中低速运动中的排线架随轴移动的问题,但是绕线程序的高速化却对数控编程从原理与方法上提出了更高的要求。为此.必须在研究高速绕线工艺机理的基础上,研究适用于高速高精度绕线的数控编程原理及方法。在这方面,绕线机高速运动工艺机理、高速绕线参数知识库、基于绕线机高速非线性运动误差补偿的规划、程序速度变化的平滑过渡、基于STEP的速度标准、面向特征绕线程序的高级C语言等都是需要研究的内容。高精度化技术提高数控绕线机的运行精度,一般可通过减少数控系统的误差和采用机器前瞻性的误差补偿技术来实现。在减少CNC系统控制误差方面,通常采取提高数控系统的分辨率,提高位置检测精度的方法。然而在高速、高精绕线的情况下,在线动态测量和补偿存在着高精度与大量程几何量之间的矛盾,是传统检测方法难以完成的。因此,需要研究新的测量和补偿机理,即进行高精度、大量程几何量的在线动态检测原理研究,以及控制误差的在线和实时检测、预报和补偿方法等研究,在位置伺服系统中采用前馈控制与非线性控制等方法。为解决绕线机在高速、高精度运行中的小步长与大行程之间的矛盾,需要研究新的高速驱动原理及机构。在绕线机误差补偿技术方面,除采用齿隙补偿、丝杠螺距误差补偿和夹具补偿等技术外,近年来对设备热变形误差补偿和空间误差综合补偿技术的研究已成为全行业范围的研究课题。绕线机作为电子工业专用设备之一,在我国已生产和使用了多年,改革开放以来,我国元器件厂也引进了许多国外的绕线机。常见的有平行绕线机、环行绕线机及各种特种绕线机等。在绕制细微漆包线时,这些机器都会遇到共同的问题,如无法达到整齐排线,绕线张力无法控制等,特别是绕制0.1mm以下的一些音圈、传感器机芯等线圈时,问题尤为突出。针对这种情况,我们研制了这种适用于细微漆包线的绕线机,很好地解决了这个问题,用它绕制的磁电式测振传感器机芯线圈,张力稳定,线圈直流电阻一致性好,排线整齐,外观达到了“镜面”效果。实现原理与普通绕线机一样,精密绕线机的排线也是用步进电机来实现的,放线张力的控制也用了弹簧摩擦片张力器,但为了达到设计要求,有针对性地进行了许多改进,采用复合排线法,加装了张力指示仪,大大地改进了整机性能,提高了产品质量。在绕制细微漆包线时,由于线径细,如果张力太大,就会将线拉长,使线圈的直流电阻增大。在成批生产中,张力的不稳定还会造成线圈与线圈之间较大的直流电阻差异,所以要严格控制张力。为此,在普通放线张力仪与宝石针之间加装了一个张力指示仪,它是一个机械式张力指示仪,通过指针刻度即可知道绕线张力是多少克,避免了操作工人凭经验调节所带来的偏差,张力指示仪的加装对减少高速绕线时产生的线的抖动也有好处。细线的放线张力器一般都是弹簧摩擦片式,经过细致调节完全可以满足要求。绕细线线圈时一般采用两种排线方式,即自由排线和强制排线。这两种排线方法各有千秋,自由排线靠线的张力及摆动轮或摆锤的摆动来排线,导轮与线圈骨架之间的距离较远,只要调节得当,每匝线都能紧密排绕,完全可以使绕出的线圈达到“镜面”效果,但是调节起来比较困难,主要是机械方面的调试量太多;强制排线利用绕线主轴与排线轴的同步运动技术,使每绕一圈,排线机构步进一定的距离,一般是步进一个线径的距离,在电子数控技术发展的今天,实现起来并不困难,只要事先设置好绕线参数,不需要太多的调试即可绕线,但经过我们反复试验,强制排线方式用于高速绕制0.1mm以下的线圈时非常困难,经常出现乱绕现象。采用将两种方式复合,取其长补其短,以强制排线为主,自由排线为辅,宝石针与线圈骨架的距离拉大,控制系统根据这一距离和设定的绕线参数,计算出实际的排线参数,再根据实际调试加以修正,由于控制系统有掉电保护功能,对每一种规格的线圈,经过几次调整,都可以很快得到理想的绕线参数并保存。绕线时,宝石针的摆动与绕线主轴同步,不过其摆动幅度比单独采用强制排线时小,留出了一定的余地让自由排线来发挥其紧密排绕特长。以单片机为中心构成的控制系统,由于程序存储器在单片机内部,四个口都可以作为I/O使用,大大简化了外围电路,提高了系统的可靠性。单片机电路是一典型的单片机最小应用系统,四个口均未用作数据口或地址口,其中,P0口工作为基本输入输出方式,控制LED显示及EEPROM的读写,串行EEPROM电路用了一块X25045,它既能存储绕线参数,防止掉电丢失,又担当了监控CPU的看门狗。P1口工作在输出状态,控制主轴电机M1变频器,排线步进电机M2驱动器,电磁制动器和蜂鸣器。P2口专门控制4×4监控键盘,采用了常规的行列矩阵扫描原理。P3口用于操作按钮和绕线传感信号的输入,其中,计数传感信号连到外部中断INT0端,它是正确绕线的关键信号。复位电路和晶振电路比较简单,输出部分主要包括主轴电机变频器控制、步进电机驱动器控制和LED显示驱动三部分。变频器控制占用了三个口线启动、转动方向和第二速度选择,均通过小型直流继电器来切换。第二速度选择是在预停机时,使变频器运行在低速状态,以便计数到匝时直流电磁制动器能及时制动,从而达到准确停机的目的。步进电机驱动器控制信号有两个,即串行步进脉冲信号和方向信号,这两个信号都是TTL电平,由于驱动器内部有光耦隔离,故可以直接输出。驱动器在内部将串行步进脉冲进行环行分配,变成三相信号,显然,这种方式省了单片机的一个控制信号。LED显示器是主要的人机界面,由集成电路MC14499和74LS05来担当,MC14499是一款工作于串行方式的七段数码LED编码驱动接口电路,通过外串电阻来驱动共阴极发光二极管,仅通过CE、CLK和DATA三个信号与单片机接口,大大节省了口线资源。输入信号包括操作按钮信号和绕线传感信号,由于这些信号均来自机器,拉线较长,为了防止干扰,有必要对其进行隔离和处理。排线零位信号由挡光片触发,是步进电机排线的坐标原点,每绕完一个线圈,都要回到原点对零,以消除由于步进电机丢步或丝杠反向间隙造成的积累误差。主轴零位信号用于主轴的精确定位,保证每次都从某一位置开始绕线或每次都能停在某一固定位置,也由挡光片来触发。计数传感信号有两个作用,一是匝数计数,二是作为绕线主轴与排线轴的同步信号,它是一个中断输入信号,单片机收到这个信号就认为绕了一圈,步进电机应该连续走一个线径的距离,当然,单片机要将这个距离平均分配为十次走完,这个任务由装在主轴上的分频式码盘来完成。绕线机控制系统的实时性很强,而且主程序与中断程序、中断程序与中断程序之间的嵌套比较复杂,因此,整个程序都用汇编语言编写和调试。在单片机中断资源的利用方面作了合理安排,如T0定时器用于步进电机调频脉冲,INT0外部中断用于匝数计数和同步控制等。具体的键盘扫描、LED显示、算术运算、中断处理等程序,数控细微线绕线机已在用户厂进行了小批量使用,实践证明其绕线质量满足精密线圈要求,调试方便,稳定可靠,由单片计算机精密控制实现的复合排线方式实用可行,很好地解决了国产设备及进口设备在高速绕制细微线线圈时出现乱绕的问题。数控绕线机具有一切数控装备的高速度、高精度、高柔性和高自动化程度等优点,电子产业的进步也逐步向绕线机的数控系统和伺服驱动系统提出了更高要求,主要从数控系统与伺服驱动系统方面介绍其关键技术。高速化技术-要实现绕线机的数控高速化,首先要求数控系统能对由微小程序段构成的绕线程序进行高速处理,以计算出伺服电机的移动量,同时要求伺服电机能高速度地作出反应。采用32位/64位微处理器,是提高绕线机数控系统高速处理能力的有效手段。在数控绕线机的高速化中,提高主轴转速占有重要地位。主轴高速化的手段是直接把电机与主轴通过联接器,联接成一体,联接器的变速功能可将主轴转速大大提高。排线部份则采用直线电机技术来替代目前绕线机排线传动中常用的滚珠丝杠技术,在提高排线精度的同时,提高了加速度。除在绕线机上不断采用新型功能部件外,高速绕线必要的工装模具的跳动及同心度在系统控制的高速运动下,需要专业合理的设计需要高精度的加工,方能满足高质量的线圈绕制需求。数控绕线机具有一切数控装备的高速度、高精度、高柔性和高自动化程度等优点,电子产业的进步也逐步向绕线机的数控系统和伺服驱动系统提出了更高要求,高速化技术要实现绕线机的数控高速化,首先要求数控系统能对由微小程序段构成的绕线程序进行高速处理,以计算出伺服电机的移动量,同时要求伺服电机能高速度地作出反应。采用32位/64位微处理器,是提高绕线机数控系统高速处理能力的有效手段。www.jnbeiqi.cn